LNNano - Brazilian Nanotechnology National Laboratory

Fully-printed carbon black conductive nanostructures for functional devices

Print this pageShare on FacebookTweet about this on TwitterEmail this to someoneShare on LinkedIn


In this work, we demonstrate the first example of fully printed carbon nanomaterials on paper with unique features, aiming the fabrication of functional electronic and electrochemical devices. Bare and modified inks were prepared by combining carbon black and cellulose acetate to achieve high-performance conductive tracks with low sheet resistance. The carbon black tracks withstand extremely high folding cycles (>20 000 cycles), a new record-high with a response loss of less than 10%. The conductive tracks can also be used as 3D paper-based electrochemical cells with high heterogeneous rate constants, a feature that opens a myriad of electrochemical applications. As a relevant demonstrator, the conductive ink modified with Prussian-blue was electrochemically characterized proving to be very promising toward the detection of hydrogen peroxide at very low potentials. Moreover, carbon black circuits can be fully crumpled with negligible change in their electrical response. Fully printed motion and wearable sensors are additional examples where bioinspired microcracks are created on the conductive track. The wearable devices are capable of efficiently monitoring extremely low bending angles including human motions, fingers, and forearm. Here, to the best of our knowledge, the mechanical, electronic, and electrochemical performance of the proposed devices surpasses the most recent advances in paper-based devices.


Murilo Santhiago, Cátia C. Côrrea, Juliana S. Bernardes, Mariane P. Pereira, Letícia J. M. Oliveira, Mathias Strauss, Carlos C.B. Bufon

Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, Sao Paulo, Brazil.

ACS Appl. Mater. Interfaces, 20179 (28), pp 24365–24372

Direct link: http://pubs.acs.org/doi/abs/10.1021/acsami.7b06598